
yu,/~, 6 + = au,l , u + = u/u,, 0 + : eu l , A~ = A~u,/~, A~ = Aeu,/~, A~ : A u,l , dimension- 
less quantities in the near-wall variables; A, K, Bo, universal constants in the logarithmic 
and root-mean velocity distributions; cl, c2, c3, numerical coefficients; U,cr, stress at 
which the influence of the polymer on the mean velocity profile starts; a(~), parameter 
characterizing the influence of the polymer; ~cr, minimal pressure gradient at which the in- 
fluence of the pressure on the boundary layer starts; cf, local friction coefficient. 
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HEAT EXCHANGE DURING FLOW OF ANOMALOUSLY VISCOUS FLUIDS IN 

CYLINDRICAL CHANNELS OF SIMPLY CONNECTED CROSS SECTION 

Yu. G. Nazmeev, L. I. Feifer, 
A. M. Yurist, and K. D. Vachagin 

UDC 532. 517.2 

A method is proposed and results of a numerical solution are presented for a 
problem of heat exchange on the initial section of cylindrical channels of sim- 
ply connected cross section during steady-state flow of an anomalously viscous 
fluid. 

A theoretical investigation of heat exchange during flow of an anomalously viscous fluid 
in cylindrical channels of simply connected cross section has great applied importance. 

A considerable number of studies [i, 2] have been devoted to questions of the heat ex- 
change of anomalously viscous media for their flow in prismatic simply connected channels. 
However, in connection with the fact that the treatment of the given question encounters 
large mathematical difficulties, the known studies have either been of an experimental na- 
ture or have been devoted to a consideration of particular cases (a "power" rheological law, 
flow in channels of simplest forms, etc.). A fundamental obstacle for calculating the heat 
exchange in prismatic channels is the absence of analytical methods of determining the veloc- 
ity profile in an anomalously viscous medium. 

The aim of the present study is to solve the problem of heat exchange on the initial 
section of a cylindrical simply connected channel for flow of an anomalously viscous fluid 
described by an arbitrary rheological law for the case of boundary conditions of the first 
kind. 

Considering laminar steady-state flowof an anomalously viscous fluid in a prismatic chan- 
nel for the condition that heat transfer owing to heat conduction along the axis of the chan- 
nel is incommensurably small in comparison with the forced transfer and dissipative release 
of heat is insignificant, the problem can be formulated in the following way: 

(I) 
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x, y E G = G +  r, O . ~ z ~ Z ,  

a ---~ r'onst. 

The boundary conditions of the first kind are written as 

U (x, y, o):= Uo, U(x, y, z)l~ = U~. 

The v e l o c i t y  p r o f i l e  c a n  b e  f o u n d  f r o m  
Ov dv = Or_ dx+ dy 

by means of the integration 

v(x, y)= ~ a x + ~ d v  +c,  

(2) 

(3) 

( 4 )  

where the fluidity~ is expressed by the function 

\ ax I ~ -  " (5) 

The constant of integration in (4) equals the maximum value of the velocity Vma x- 

The method of determining the velocity profile that is used was obtained under the as- 
sumption that the nature of the shear stress distribution over the cross section of the chan- 
nel in an anomalously viscous medium is similar to the case of the flow of a viscous fluid 
under the same conditions, and we apply it accordingly for anomalously viscous systems that 
do not have noticeable elastic properties [3]. 

Equation (4) describes the velocity distribution in channels with such a form of cross 
section, for which we know the solution of the Dirichlet problem for ~ in the Poisson equa- 
tion. At the present time, for finding the function ~ and the solution of the indicated 
problem we have developed a reliable mathematical apparatus; with the help of this calcula- 
tion we add channels of the same arbitrary form of cross section. For a number of complex 
profiles of channels the expression for the function ~ is obtained in the form of special 
functions, series, etc., and has a cumbersome form. Therefore direct integration of Eq. (4) 
for complex profiles can be sufficiently easily realized numerically using a computer. 

In oonnection with this, the formulated problem of heat exchange was solved numerically 
on a computer, with derivation of Eq. (4) on a separate block. Such a formulation of the 
problem enabled us to develop a typical program and block diagram of solution for channels of 
arbitrary cross section. 

Using the notation of [4], we write the system (i), (2) in the form 
2 

w ,  L = ZL , (6) 
a Oz ~=~ 

OzU L~U-- az~ '~CG'~ 

u ( z ,  z)l~ = u~, u (z ,  o ) =  Uo, z = (z,, z~). (7) 

In the region G being considered the following conditions are satisfied: l) intersection 
of the region G with any line parallel to the coordinate axes consists of a finite number of 
intervals; 2) it is possible to construct in the region G a connected grid ~h with step h B, 

~=i, 2. 

The set ~h of the interior nodes of the grid consists of the points %----(%1, %2)EG of 
intersection of the lines X8 = i~hB, i~ = 0, -+i, +2, .... , ~ = i, 2, the set Yh of boundary 
nodes- from~thepoints of intersection of the lines CB, ~ = i, 2, passingthroug~h all the 
interior nodes % E c% with boundary F. For a difference approximation of the operator L~ at 
the node X we chose a three-point pattern consisting ol the points X(-I$), X, and X I(+I~~). 
The difference operator AS ~ L~ has the form: a) at regular nodes 

r __ 2Y + rC-h3)), ( 8 )  

b) at nonregular nodes 
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I 1 ( y ( + l ~ ) _ y  y_y(-h~) 
KL 

AIRY----- Yz-~ = [  1 (y(+'~)____y y__y(-'~) 

I 

(9) 

On the interval 0~ z~ Z we introduce the grid ~, = {zj = jT*, j = 0, 1 .... , jo} with step 
T* = z/jo. 

Formally, replacing the polynomial heat equation by an array of one-dimensional heat 
equations, and approximating each equation of number $ on the semiinterval zj + (~ -- i)/2~-~ 
z~zj + B/2 by a two-layer scheme, we obtain two implicit locally one-dimensional schemes 

= A~y i+~/2 . 

With each equation we associate a boundary condition 

yi+~/2=U~ for X6Yh,~, 

(io) 

(11) 

Y(X, O) = Uo. 

For known YJ we find the value of yj+1 on a new layer from the solution of both of Eqs. (i0) 
with boundary conditions (ii), successively assuming B = i, 2. 

For finding Y j+B/2 we obtaJa~, according to [4], a boundary-value problem of the form 

- -  *d+l~/2 __ CLfjy]+i~/2 m vf+13/2 ~f~(372 
�9 - - - - -  -- fi; P AiYif~--! -~- *,..,,i .z il3+! 

Yi+f~/2=U r for XE"gh,~, J~----1, 2, (12) 

in which only the varying lower indices are indicated. The difference equation (12), written 
along the segment A~ lying on the line C~, is solved by the pivotal method along all the seg- 
ments A~ for fixed $. The function (4) in the region G is approximated by the function W(X). 

For solution of the system (i), (2) reduced to the boundary-value problem (12), we for- 
mulated a program in the language PL/I for an EC-1020 computer. For convenience in calcula- 
tion we carried out a transformation of coordinates -- the coordinate origin was shifted in 
such a way that the region G was located completely in the first quadrant of a Cartesian 
coordinate system. Thus, the set mh can be represented in the form of a rectangular matrix 
of order p, n, where p = max(il + i) and n = max(i2 + i), with nonzero elements at the nodes 
belonging to G. 

~u ! I! 
Introducing the set H B = {h~ , N i Ni~} i B = i, 2, 3, ..., B = i, 2, we can determine 

the nonzero elements of the matrix B, an~'giv~ initial' and final values of the indices of the 
pivot coefficient of the difference Eq. (12). For solution of problem (12), we formulated 
matrices of the same order W, MI, M2, and M3. The elements of the matrices M~, M2, and Ms 
are, respectively, the values of the functions YJ(x), Yi+~#(X), and YJ+~(• in the region G. 

At the beginning of the calculation, the matrix elements of I I:~ are given the value 
Y(X, 0) = Uo. According to (i0), for calculation of the matrix elements of Ma the pivot was 
carried out in the direction of X~, and for M3 -- in the direction of X=, for which the set 
H~ is used. If the difference between the values of the elements of the matrices MI and Ms 
is greater than the given ~, then the matrix element of M~ are given the values of the matrix 
elements of Ms and the elements of the matrix M2 are calculated, etc. If this difference is 
less than the given ~, the calculation is stabilized (Fig. i). 

As an example we calculated the temperature fields for flow of an anomalously viscous 
fluid [4.75% aqueous solution of sodium carboxymethylcellulose (Na-CMC)] and a viscous fluid. 
In this case, as a specific rheological model of an anomalously viscous fluid we used the 
express ion 

= % + ~ zm- (13) 

Figure 2 gives the distribution of the dimensionless temperature @ = (U- UF)/(Uo -Up), 
obtained as a result of the solution, along the axes of symmetry of an elliptical channel 
for various values of the relative length Z. 

1403 



A ssigning the ini t ia l  da t a  
I 

Calculationofthe eiementsof the ~ts Hp 
Calculation of the values of the 
elements ot matxix _WW~ 

Writing of the elements of the 
matrix ~ W 

Division of the elements of the 
matrix w by ~l 

I 
.4 sst~ning the ini t ial  condition 
for t'fle matrix M 1,, ..... 

r-~aic, of elements o.f matrix M, 
-"'1_ accord, to (12), in direction of" '  

IX1  

t'! 

' Cale. of elements of matrix tv~--~--] 
accord, to (12), in direction or-' [ Q I  
~ 2  i l l  

t 
1 m,-,~,4 ~ 191 - ~ -  r 

[ ts it neeessarv tolwrite the tem- 
j perature fietdT:, l n ~  

Fig. i. Enlarged block diagram of 
the solution. 
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Fig. 2. Distribution of dimensionless temperature G along the 
symmetry axes of the elliptical channel for flow: a) 4.75% solu- 
tion of Na-CMC (K = 0.123; m = 0.35); b) viscous fluid (K = 0; 
m = i) for Uo = 20~ and Up = 60~ (i -- z = 0.09; 2 -- 0.25; 3 -- 
0.44; 4-- 0.61; 5 -- 0.96). 

Fig. 3. Variation of dimensionless temperature 0 along the length 
of the symmetry axis of the elliptical channel for flow: a) 4.75% 
solution ofNa-CMC (K= 0.123;m =0.35); b) viscous fluid(K =0; m=l) 
for Uo = 20~ and Up = 60~ (i-- AP = 1200 N/m2; 2 -- 800; 3 -- 400). 

Figure 3 presents the variation of dimensionless temperature along the channel length 
for points of the center of symmetry of the ellipse for various hydrodymamic conditions of 
flow. 

A comparison of the theoretically calculated and experimental values [5] of the mean 
coefficients of heat transfer for flow of 4.75% solution of Na-CMC in an elliptical channel 
showed that the maximum deviation between them is 20-23% and is due to the accuracy of de- 
scribing the rheological equation (13) by a curve of the flow of a model anomalously vis- 
cous fluid. 
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NOTATION 

v, flow velocity of the fluid; U, instantaneous temperature; x, y, z, moving coordi- 
nates; a, thermal conductivity of the fluid; F, contour of the channel; Uo, initial tempera- 
ture of the fluid; Ur~ temperature of the channel wall; Z, dimensionless length of the chan- 
nel; 0, dimensionless temperature; G, region; G, region with boundary F; 9 , fluidity of the 
f~uid; T, shear stress; Tx and T~, shear stress components; AP, pressure differentialperunit 
length of channel; 4, a function that is a solution of the Dirichlet problem in the Poisson 
equation; X = (X~, X2), a point of two-dimensional Euclidean space; h$, step of the grid 
mh; Yh, set of boundary nodes; CB, a line passing through the interior nodes; ~h, set of all 
regular nodes; LRU, Laplacian operator; A~, difference operator; h* distance from the non- 
regular node X to the boundary node X (+ B~ or X ~ ~) ; T*, step of the grid along the z coor- 

�9 ~ . ! 

dlnate; hio , dlstance from the near-boundary nodes m~ ~ to the boundary nodes Yh ~; Ni~, num- 
ber of thePleft boundary nodes in the matrix in the d'~'rection of XB; N~"~, number'of the right 
boundary nodes in thematrixinthedirection of XB; 9o, fluidity of the~fluid for ~ § O; K 
and m, rheological constants. 
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UNSTEADY HEAT TRANSFER IN A MICROPOLAR FLUID FLOWING IN A PLANE CHANNEL 

V. L. Kolpashchikov, N. P. Migun, 
P. P. Prokhorenko, and V. I. Lis 

UDC 532.5:532.135 

Heat transfer in a micropolar fluid flowing in a plane channel following an abrupt 
change in the wall temperature is investigated. The obtained results indicate that 
in several cases the fluid microstructure has a considerable effect on the main 
heat-t rans fer charac teris tics. 

The theory of heat-conducting micropolar fluids (MPF) [i] can be used to characterize 
the hydrodynamic and thermal processes in several microstructural fluids (liquid crystals, 
suspensions, blood, etc.) with due consideration of the spinning of the particles in the 
medium. The hydrodynamics of MPF has now been widely investigated. There have been investi- 
gations of free convection, and also of steady heat transfer involving forced convection, 
where it was discovered that the microstructure of the fluid affects the characteristics of 
heat transfer in it. So far, however, due attention has not been paid to such an important 
practical problem as unsteady heat transfer in MPF. 

We consider the following problem. A heat-conducting MPF flows between plane parallel 
plates separated by a distance 2h. Let the temperature of plates and ~F over the whole 
length of the channel be constant and equal to To. At a certain instant the temperature of 
the plates is abruptly altered and becomes equal to Tj # To. We determine the temperature 
field over the cross section and length of the channel in relation to time. We neglect 
energy dissipation, the compressibility of the MPF, axial heat conduction, and mass forces 
and moments. We regard the hydrodynamic velocity profile as stabilized, and the physical 
properties of the MPF as constant. The coordinate origin is on the central line at the en- 
trance section of the channel, which has temperature To. The central line coincides with the 
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